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Figure 1: This zombie model (a) has numerous open surfaces, non-manifold edges, and self-intersections, displayed in red here (b). None-
the-less, using the technique described in this paper, we are able to (c) poke through the zombie’s chest and (d) create the desired tunnel/hole.

Abstract

This paper presents a method for computing topology changes for
triangle meshes in an interactive geometric modeling environment.
Most triangle meshes in practice do not exhibit desirable geometric
properties, so we develop a solution that is independent of stan-
dard assumptions and robust to geometric errors. Specifically, we
provide the first method for topology change applicable to arbitrary
non-solid, non-manifold, non-closed, self-intersecting surfaces. We
prove that this new method for topology change produces the ex-
pected conventional results when applied to solid (closed, manifold,
non-self-intersecting) surfaces—that is, we prove a backwards-
compatibility property relative to prior work. Beyond solid sur-
faces, we present empirical evidence that our method remains tol-
erant to a variety of surface aberrations through the incorporation
of a novel error correction scheme. Finally, we demonstrate how
topology change applied to non-solid objects enables wholly new
and useful behaviors.
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1 Introduction

Programs for the 3d modeling of surfaces must support ways to
change the topology of a surface or else be severely limited in their
capabilities. For instance, without some way to edit or change the
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topology of a surface, it is impossible to model a donut starting
from a sphere. The ability to model changes in topology is also
critical for the assembly of surfaces from parts, as well as permit-
ting surfaces to merge or split as they are manipulated, to name just
a few more consequences.

While the ability to change topology is critical for all 3d modeling
software, strategies vary widely depending on the representation
of the surface and the modeling paradigm in use. For instance, in
traditional CAD-derived modeling software like Maya [2013b], or
3DS Max [2013a], special tools allow the user to directly edit the
connectivity of the polygons comprising the mesh. Sketch-based
modelers in the vein of Teddy [Igarashi et al. 1999] incorporate
special stroke gestures which allow users to add tunnels or handles
to a surface. Meanwhile voxel-based modeling, exemplified by 3D
Coat [2013] or the game Minecraft [2013], naturally incorporates
changing topology as a by-product of the representation.

In this paper we propose a novel method for supporting topol-
ogy change in surface-deformation modeling software (e.g.
Zbrush [2013b], Sculptris [2013a], Mudbox [2013c]). Like voxel
modeling, we would like our topology change to be incidental, oc-
curring as a natural side effect of using existing tools/brushes. In
contrast, note that CAD-like and sketch-based modelers require
specialized tools for topology change. By choosing incidental
topology change over specialized tools, we can achieve greater par-
simony (§8) in our modeling system.

Having made the choice to incorporate topology change inciden-
tally, a number of methods for topology change primarily used in
the simulation literature are available to us [Wojtan et al. 2009;
Brochu and Bridson 2009]. Unfortunately, these methods all re-
quire that the surface represents a solid object—one that can be
faithfully represented by a voxel grid. Many surface models avail-
able in the wild (over 90% in our measurements §2.2) fail to meet
this criterion. One simple example is a height-mapped or planar
grid of quadrilaterals. In general, character models and other ob-
jects are built to function in 3d applications where skinning, ani-
mation, and visual appearance trump other concerns like solidity or
physical manufacturability. Like a facade on the set of a spaghetti
western, these models have been tailored to tell stories. Compound-
ing this problem, most existing programs do not guarantee that ex-
ported models are “solid”. So, in order to design a modeling system
which fully interoperates with the existing ecosystem, we have to
handle all surfaces, not just the conveniently solid ones.

To achieve the goal of topology change for arbitrary surfaces, we
rely on one key observation: the motion of a surface during editing
is sufficient to determine how the topology of that surface should
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change, even in the absence of reliable surface normals or the en-
closure of space—both surrogates for solidity. By simply tracking
points on the surface as they move over time and counting the num-
ber of times they experience collisions, we can determine whether
that part of the surface should be kept around or deleted: a point
which collides with the surface an odd number of times is deleted,
while one which collides an even number of times is retained.

This simple idea—using collision parity to drive topology change—
works well for solid surfaces and many non-solid surfaces as well.
However, it can be sensitive to collision detection errors, surface
holes, boundaries, and other aberrations. To increase the reliability
of our framework in the presence of such imperfections, we intro-
duce an error correction scheme based on graph partitioning.

Contributions We provide the first method for topology change
applicable to arbitrary non-solid, non-manifold, non-closed, self-
intersecting surfaces. We prove that this new method produces
expected, conventional results when applied to solid (closed,
manifold, non-self-intersecting) surfaces—that is, we prove a

backwards-compatibility property relative to prior work. Beyond
solid surfaces, we present empirical evidence that our method re-
mains tolerant to a variety of surface aberrations through the incor-
poration of a novel error correction scheme. Finally, we demon-
strate how topology change applied to non-solid objects enables
wholly new and useful behaviors.

2 Related Work & Background

2.1 What Makes a Mesh Solid?

Throughout this paper, we will work with triangle meshes that can
be specified as a list of vertex positions and a list of triangles (triples
of indices into the vertex list). This rules out the possibility of any
isolated vertices or dangling edges, but does allow for a variety of
interesting mesh types.

Many surface classifications can be determined locally from look-
ing at the degree of mesh edges (i.e. the number of triangles which
ring around an edge). An edge of the mesh is manifold if it has
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Figure 2: Mesh type locally depends on the number of triangles in-
cident to an edge: (a) manifold edge, (b) boundary edge, (c) closed
edge, (d) non-manifold, non-closed, non-boundary edge

degree 2, a boundary edge if it has degree 1, and closed if it has
even degree. If all of the edges in a mesh are closed, we say the
mesh itself is closed. Not all closed meshes need be manifold.

A second critical property of surfaces is whether or not they are
self-intersecting. If any two triangles of the mesh have a non-trivial
intersection (that is an intersection along something other than a
shared vertex or edge), then we say the mesh is self-intersecting.

We say that a mesh which is both closed and non-self-intersecting
is solid. Solid meshes can also be characterized as those meshes
which partition the ambient space R3 into two parts: those points
inside the surface, and those outside of it. Based on this classifica-
tion, every solid mesh has a canonical surface normal field with nor-
mals pointing outward. Sometimes the term “watertight” is found
instead of solid. We prefer to use solid, since the definition of wa-
tertight is inconsistent and imprecise across the literature.

Outside the class of solid meshes, we say that a mesh is unoriented
if any pair of triangles sharing a manifold edge are oriented facing
opposite directions. There are some meshes which are inherently
non-orientable, the most famous example being a Möbius band.
Non-orientable surfaces cannot be assigned a continuous surface
normal field, preventing us from relying on normals as a source of
information for topology change of arbitrary meshes.

2.2 Why Aren’t All Meshes Solid?

Not only do bad meshes exist in the wild, they are quite com-
mon. To demonstrate this fact, we ran statistics on the Brown mesh
set [McGuire 2004]: less than 25% (263/1136) of the meshes were
closed manifolds, and over 40% (472/1136) were neither mani-
fold, nor closed; over 90% (1046/1136) were self-intersecting. To
illustrate various conditions which might arise, we developed the
coffee mug example(figure 3).

Besides accidental causes, there are reasons people choose to model
these “undesirable” features. In character models for animation,

Figure 3: An example mesh exhibiting “undesirable” mesh prop-
erties. Since the artist expects the coffee mug to always sit on a
table, they chose (a) to leave the bottom open. Furthermore the
handle has been (b) attached to the mug body in a non-closed man-
ner. Lastly, the water surface has been left (c) intersecting the walls
of the mug in order to permit flexible animation later.

initial position final position result

Figure 4: When a cylinder is plunged downwards into a ground
plane, our method reacts as depicted. However, methods which only
inspect the final position of the mesh are faced with an ambiguously
symmetric problem.

skinning models regularly requires armpits and other creased areas
of geometry to self-intersect in order to achieve reasonable appear-
ances. Thin objects like cloth and flags are regularly modeled as
thin sheets, without any intention of representing closed objects.
Scanned and reconstructed geometry, especially of large objects
like buildings is often incomplete, producing meshes with holes in
order to preserve fidelity relative to the raw scan data.

2.3 Prior Work

Most methods available today for computing topology changes
frame the problem in the context of mesh-repair [Attene et al. 2013;
Ju 2009]. After a surface is deformed, a mesh-repair-like algorithm
is run on the surface at the final position. This can be accomplished
through converting the surface into an implicit function represen-
tation [Wojtan et al. 2009; Wojtan et al. 2010], into a BSP-based
volume representation [Campen and Kobbelt 2010] or by march-
ing around the outside of the mesh, using normals [Zaharescu et al.
2011]. All of these techniques are used to infer a volumetric inter-
pretation (inside vs. outside) of the mesh and discard those parts of
the surface which are not necessary to enclose the inferred volume.
We believe that the dynamesh feature added to ZBrush [2013b] in
late 2012 uses a similar kind of volumetric method.

Because these methods (a) force all surfaces to represent solids,
and (b) ignore motion data allowing for the inference of what has
changed between two frames, they are unable to handle arbitrary
meshes (see comic figure). All self-intersecting surfaces must be
“corrected” and open surfaces must have their holes filled, even
when doing so would lead to nonsensical results (e.g. hole-filling
a ground plane). These methods cannot disambiguate symmetric
geometric arrangements (e.g. a cylinder penetrating a ground plane,
figure 4) because they only inspect the final position of the mesh,
not the full motion.

More similar to our approach, Brochu & Bridson [2009], and
Stãnculescu et al. [2011] make use of motion data. Rather than
attempting to repair the final position of the mesh, they attempt to
stitch proximate or colliding pieces of the mesh together as the de-
formation progresses. Brochu & Bridson use a combination of col-
lision detection, local remeshing, and time-step control to get the
surfaces of the mesh close but not touching, allowing for a tunnel
to be stitched. Similarly, Stãnculescu et al. tightly control the size
of both mesh elements and time-steps in order to create safe condi-
tions for tunnel stitching.

Both Brochu & Bridson, as well as Stãnculescu et al. assume that
displacements are small and can be rewound as necessary to pre-
vent collision, coercing the rest of their simulation and modeling
systems (respectively) to satisfy these constraints. However, nei-



com
pute

intersections

initial
position

INPUT

final
position

collision
detection

error
correction

raw parity corrected parity

intersection 
curves

subdivision, gluing, &
 deletion

OUTPUT

Figure 5: Overview of our method and its components

ther of these constraints are necessarily true in a modeling system,
as evidenced by our ‘grab’ brush(§4). Furthermore, these methods
closely interweave local surface remeshing with topology change.
Such a conflation poses problems when one attempts to integrate
topology change with an existing commercial modeler that uses dif-
ferent, and more sophisticated surface re-meshing techniques.

In contrast to prior work, we make no special assumptions about
what kinds of meshes our algorithm is presented with.

Currently, artists tend to directly edit the connectivity of their
meshes, or make use of Boolean operations (aka. CSG). How-
ever, Boolean operations are only defined on closed, orientable sur-
faces [Requicha 1977]. When working with open surfaces, artists
are forced to directly edit the connectivity — no other options are
available to them.

3 Method

3.1 Overview

Our approach to topology change relies on existing, well under-
stood computations as components: collision detection, static inter-
section identification, and triangulation. Perhaps the only exception
is a formulation of graph partitioning specialized to serve as a form
of error correction. We string these components together in order
to compute a parity field over the mesh, recording the parity of
the number of times that point collided with the surface during the
given motion. This field determines whether the surface should be
deleted (odd parity) or preserved (even parity). Throughout this
process we store an approximation to this (conceptually) continu-
ous field by sampling its value at mesh vertices.

As input for our algorithm, we require a triangle mesh at the initial
time/frame and a linear displacement of vertices transporting the
mesh to its position at the final time/frame. We begin (figure 5) by
running collision detection to compute a raw parity field. If we
only worked with solid surfaces, this raw field would suffice, but
because we expect our mesh to exhibit aberrations or other short-
comings we treat the raw parity field as if it has some (relatively)
small number of corrupted entries. To correct these errors and pro-
duce a more desirable parity field, we perform an error correction
step informed by the mesh’s self-intersections at the final frame’s
position. With the corrected parity field in hand, we can then sub-
divide the mesh, glue the mesh, and delete the appropriate triangles.
This results in our final output mesh with suitably altered topology.

3.2 Collision Detection

Our method for topology change relies on knowing the parity of
the number of collisions each vertex makes with the rest of the sur-
face. In order to tabulate the number of collisions, we must first run
continuous collision detection for every vertex of the mesh.

For every vertex of the mesh and every triangle not containing that
vertex, we compute the roots of the usual cubic equation (Appendix
A) and the associated barycentric coordinates, and we use them to
determine whether any collisions occurred. We arrive at the desired
collision parity value by accumulating the results of this computa-
tion for each vertex across all potentially intersecting triangles.

In order to accelerate this computation so that less than quadrati-
cally many collisions must be tested, we use an acceleration struc-
ture, namely an axis-aligned bounding volume hierarchy. We build
this AABVH over the line segments traced out by the moving ver-
tices. We then stream the triangles over this structure to identify
potential collisions.

Rather than attempt to maintain this acceleration structure between
frames, we use a fast, median-split, top-down, divide-and-conquer
build inspired by work on real-time ray tracing [Wald 2007]. At
each node, a dimension (x, y, or z) is selected and the geometry is
rearranged via a quick select search for the median. The build then
recurses on the two halves. The resulting build algorithm takes time
comparable to a quick sort of the geometry and consumes a small
fraction (10%) of the total time spent performing collision detec-
tion. Since no heuristics are used to ensure a quality acceleration
structure, and since we don’t make use of narrow-phase collision
culling techniques, we expect that the overall cost of collision de-
tection could be significantly improved by just applying existing
methods [Teschner et al. 2005]. Nonetheless, this simple strategy
suffices to demonstrate our prototype.

Besides speed, correctness is frequently a problem with collision
detection algorithms. When used in applications like cloth simula-
tion, accurate collision detection becomes critical to keep surfaces
from snagging on themselves. However, implementing truly ro-
bust collisions is a difficult problem. Standard robustness methods
(§3.3) are restricted to handling rational arithmetic, but collision
detection requires cubic root finding. Brochu et al. [2012] recently
gave a very clever solution to this problem, formulating collision
detection as a series of predicates relying solely on rational arith-
metic.

Here we only need an approximation to the parity field that we com-
pute from collision detection. Since we already intend to run an
“error correction” step to tolerate mesh aberrations, we can like-
wise tolerate the small number of errors in the parity field which
result from imprecise collision detection. Unless we are presented
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Figure 6: When surfaces have holes (inset, initial) the raw parity
field can be corrupted (raw parity, inset). Running error correction
removes these isolated errors.

with a highly degenerate motion (e.g. the collision of two perfectly
aligned grids) these numeric errors are rare. To help ensure that they
remain rare, we apply a slight perturbation (similar to perturbations
for the intersection computation in the following section). We ob-
served that in the case of two aligned grids, adding a perturbation
eliminated 100% of the numeric errors.

3.3 Static Intersections

Once the mesh has reached its final position at the end of a frame of
movement, we determine the region where the final mesh statically
intersects itself. We find these static intersection curves for two
reasons: First, this information is used to guide the error correction
procedure. Secondly, the intersection curves are used to cleanly
segment the mesh into preserved and deleted portions.

We find the intersection curves in three steps. First, we identify all
edge-triangle intersection points present. Second, we infer the set
of all intersection edges from these points. Finally, we identify any
points formed by the intersection of three triangles.

To efficiently find edge-triangle intersections, we use a second
AABVH, like the one computed for collision detection, this time
built over the edges of the mesh. Triangles are streamed over this
structure and tested for intersection with the edges they encounter.

For each intersecting edge-triangle pair (e, t), we collect the set
of triangles ti with e as an edge. Then, emanating from the point
where e and t intersect, there must be exactly one intersection edge
on t for each triangle ti, which is uniquely identified by the pair
{t, ti}. We accumulate all such pairs identified via this combinato-
rial generation procedure and eliminate duplicates to form a set of
triangle-triangle intersection edges.

To complete the intersection computation, we identify triples of tri-
angles {t1, t2, t3} such that {t1, t2}, {t1, t3}, and {t2, t3} are all
intersection edges. Each triple is tested to see whether the three
triangles intersect in a point. Triangle-triangle-triangle intersection
candidates are rare, so this step takes a negligible amount of time.

Geometric robustness Unfortunately, unlike collisions, we rely
on robustly computed intersections. This is because our intersection
curves are used as input to a triangle subdivision algorithm. If these
curves reveal any inconsistencies, then the subdivision algorithm
could segmentation fault or produce non-sensical output.

To ensure consistent results from our intersection computation at a
reasonable overhead, we use a variety of techniques from robust ge-
ometric computation. First, we use floating point filters [Shewchuk
1997] to efficiently decide the results of most intersection predi-
cates. When these filters fail, we fallback to exact big number arith-
metic, ensuring that all predicates are correctly computed. (The
actual coordinates of intersection are always computed to machine
precision in big number arithmetic.) However, degenerate cases
may still occur (e.g. when testing a potential edge-triangle intersec-
tion, the edge being tested might pass exactly through an edge of the
triangle being tested). Because degenerate cases are measure-zero

scalar field corrected paritycorrected parity result
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Figure 7: Majority voting works poorly when intersection curves
don’t separate the surface. Graph partitioning allows us to intro-
duce new cuts into the mesh.

events, by definition they can be eliminated through perturbation of
the geometry [Seidel 1994]. While symbolic perturbation [Edels-
brunner and Mücke 1990] is one popular way to achieve this end,
we instead rely on explicit numeric perturbation of coordinates on
a scale well beneath the smallest resolution of triangle edges in use.
(We perturb on the order of 10−5 units in our prototype code.)

If any degeneracies are detected during the computation of intersec-
tions, we abort the computation, perturb all geometry and try again.
On our test cases with highly degenerate geometry, this strategy suf-
ficed to eliminate degeneracies after a single perturbation. As with
acceleration structures, we chose this strategy for expedient imple-
mentation, not because we advocate the choice as the best option
for production code.

3.4 Error Correction

“Errors” of various sorts and sources may result in collision detec-
tion producing a corrupted parity field. Some of these errors may
be due to numeric inaccuracies (§3.2) while others may be due to
aberrations (e.g. holes) in the mesh itself. We view the process of
computing a more appropriate parity field as a form of error cor-
rection. In this section we will propose two such error correction
schemes, ultimately discarding the first in favor of the second.

One strategy is suppressing outliers in the parity field through ma-
jority voting. We split them surface into connected components
using the static intersection curves (computed at the mesh’s final po-
sition) and vote within each component independently. Concretely,
we take the vertex-edge graph given by the triangle mesh and re-
move all edges which are cut by some intersection curve. The con-
nected components of the resulting graph form the connected com-
ponents of the surface. Within each component, a vertex gets one
vote with weight proportional to the area of the surface that it rep-
resents. Whichever parity (even or odd) gets more votes is assigned
to all vertices in the component.

Majority voting works well when the intersection curves neatly par-
tition the surface into primarily odd or even components. However,
when the user manipulates an open surface near its boundary (Fig-
ure 7), the resulting intersections rarely partition the surface nicely.

To address this shortcoming, we propose a second error correc-
tion scheme based on graph partioning. Graph partitioning al-
gorithms label the vertices of a graph with one of two possible
labels, splitting the graph. In image segmentation, labels such as
foreground/background are used; here we compute even/odd par-
ity labels. The desired labeling is found by solving an optimization
problem with both a binary “smoothness” term (minimizing the size
of the cut between the two regions) and a unary “accuracy” term.
(deviation from the raw parity field) Vision researchers have ex-



plored a range of different formulations and algorithms for graph
partitioning [Boykov et al. 2001; Grady and Schwartz 2006].

Following previous examples, we can formulate our graph parti-
tioning problem as follows:

min
x

∑
(i,j)∈Eo

wij(xi − xj)2 + γ
∑
i∈V

wi(xi − ri)2 (3.1)

(Here and for the remainder of this section, we let ri denote the
value of the raw parity field at vertex i, and xi denote the continu-
ous error corrected value which we solve for. ri = 1 if the vertex
is marked even and ri = −1 if it is marked odd. Eo denotes only
those edges of the triangle mesh which are not already cut by an
intersection edge. Edge and vertex weights (wij , wi) are explained
at the end of this section.) The energy in equation 3.1 can be op-
timized by solving a linear system and rounding all xi > 0 to 1;
xi < 0 to −1. Alternatively, the energy can be optimized using a
min-cut algorithm [Boykov et al. 2001]. We tried both approaches.

In the above formulation, the value of γ is critical. On the one hand,
we want to ensure that the solution boundary between the even and
odd portions of the surface is smooth (low γ). However, when γ is
set too low, accuracy will be ignored. When we played with trying
to tweak this balance between the binary and unary terms, we were
unable to find a happy medium. Every setting would break some
test case.

Further complications arose when we tried to apply the min-cut al-
gorithm. Although we were able to get reasonable results on most
test cases, ignoring edges cut by intersections led to failed cases.
In the following, we will see how both prying apart values near the
intersections (eq. 3.2) and penalizing unused intersections (eq. 3.3)
helps to coerce more desirable behavior.

To get around these problems we take a cue from isoperimetric
graph partitioning [Grady and Schwartz 2006] and use a two-stage
partitioning algorithm. In the first stage, we compute a continuous
relaxation of the graph partitioning problem using an energy which
prioritizes smoothness. The resulting field encodes a constrained
set of possible cuts in the form of its isocontours. By focusing on
the smoothness term at this stage, we can limit our search for a
cut to only smooth candidates. In the second stage, we select one
of these isocontours by choosing how to round the continuous so-
lution into a discrete one. By re-introducing a stronger accuracy
term only after we reach this second stage, we ensure a reasonable
degree of accuracy while simultaneously guaranteeing smoothness.

In stage 1, we minimize the following quadratic energy within each
connected-component:∑

(i,j)∈Eo
wij(xi − xj)2

+
∑

(i,j)∈Ec
wij(xi − xj − (ri − rj))2

+ γ
∑

i∈V (xi − ri)2
(3.2)

(Appendix B explains how this problem is solved in more detail.)
Unfortunately, since we make γ small (= 10−3) the solved values
x will be unreliably small. To avoid this problem, we introduce a
few extra binary terms. Each new binary term is associated with an
edge (i, j) ∈ Ec which is cut by some intersection curve. The extra
terms pry apart the values of x on opposite sides of the intersection
curve, using the observed difference in the raw parity field. Aside
from our dependence on Unfortunately, this heuristic term is nec-
essarily asymmetric, allowing it to be compromised when there are
a sizable number of raw parity errors near the intersection curves.
This did not turn out to be a significant problem in our test cases.

In stage 2, we sort the vertices by their x values and perform a
sweep cut to determine the rounding threshold x0. Each vertex with
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Figure 8: Our method even works on some triangle soups. In this
variation on an earlier case, we disconnect all of the triangles in
the ground plane and jitter their vertices; same result.

xi < x0 will be rounded down to −1 (odd) and otherwise will be
rounded up to 1 (even). We begin with x0 below all xi and “sweep”
upwards until x0 is greater than all xi. We select whichever x0

minimizes the cut energy:

δ
∑

i∈V wi1[ri 6= yi]

+

(∑
(i,j)∈E wij1

[
(i, j) ∈ Ec and yi = yj or
(i, j) ∈ Eo and yi 6= yj

])2

(3.3)
(where yi is the rounded value of xi and 1[·] is an indicator func-
tion.) Note that we penalize both newly introduced boundary
(i, j) ∈ Eo, as well as unused intersections (i, j) ∈ Ec. In order
to balance these two terms, we use δ = 2π (half the isoperimetric
constant) and square the boundary length term. This results in a
geometrically nice, scale-free energy.

Edge and vertex weights Edge weights wij and vertex weights
wi should be set to suitably encode the geometry of the mesh. Sum-
ming all of the edge weights between the even and odd parity ver-
tices should approximate the length of that perimeter curve, while
summing the vertex weights should approximate surface area. To
accomplish this, we use the following scheme: Conceptually, we
can think of each triangle as being divided into 3 quadrilaterals by
edges which connect the midpoint of each edge to the barycenter of
the triangle. Then, the area of this each quadrilateral can be added
to each vertex weight, while the length of the midpoint-barycenter
line segment can be added to the appropriate edge weight.

3.5 Subdivision, Gluing, and Deletion

Once we have successfully computed intersection curves and a cor-
rected parity field, we have all the data necessary to actually change
the topology of the surface. We complete this change in four steps:

1. Decide which curves to resolve. When beginning this step, we
have all of the intersection curves already detected. We will dis-
card some of these curves, and add in new curves with the goal of
producing a set of curves to separate the even parity portion of the
surface from the odd parity portion of the surface. First, we group
the intersection curves into connected components. Any connected
component of intersections which is adjacent to only even or only
odd parity regions is removed from consideration (i.e. it will be left
un-subdivided).

Next, we identify all edges of the triangle mesh (not intersection
edges) which both separate even and odd parity vertices, but are not
themselves crossed by an intersection curve. “Intersection” vertices
are inserted midway along each of these edges. Then, we examine
all triangles untouched by an intersection curve, but with both even



and odd parity vertices. Each such triangle will have false “intersec-
tion” vertices inserted along exactly two edges. We then introduce
a false “intersection” edge connecting these vertices.

(Note that the resulting false intersection curves will terminate just
before entering a triangle containing an actual intersection curve.
This produces slight gaps in the curve separating even and odd par-
ity. Closing these gaps explicitly involves more complex geometric
reasoning. Instead, we will fix up this minor shortcoming with a
post-process after subdividing.)

2. Subdivide the mesh. We solve a constrained triangulation prob-
lem on a triangle-by-triangle basis. We accumulate all of the points
and edges of intersection lying on each triangle and run Shewchuk’s
Triangle[1996] to produce a constrained triangulation.

3. Glue vertices and edges. Except for the false intersection curves
inserted during step 1, intersections necessarily lie on two different
parts of the surface. Therefore we must glue together the dupli-
cate curves by replacing duplicated vertices and edges with unique
vertices and edges. In effect, this step connects the surfaces along
those intersections we did not discard in step 1.

4. Delete triangles with odd parity. Finally, we are back to a normal
mesh without intersection curves. We must now propagate the par-
ity field onto the triangles and delete the odd portions. This occurs
in two sub-steps. First, observe that no triangle in the subdivision
can have both odd and even parity vertices after subdivision. This
is because we inserted some kind of intersection vertex into every
edge of the original mesh with opposite parity endpoints. Taking
advantage of this observation, we decide the parity of the majority
of triangles by simply copying values from the vertices.

However, because of both the gaps introduced by step 1 and the
potential for complicated intersections happening entirely within a
single triangle, there may be some triangles which lack parity. To
cover these triangles, we perform a 50 round iterated diffusion. The
parity at already decided triangles is held constant, while values
are propagated between any two adjacent triangles not separated
by an intersection curve. Triangles still undecided at the end of
this process are marked with even parity. Finally, the odd parity
triangles are deleted.

4 Integration with Mesh Modeler

To demonstrate our method of topology change, we constructed a
rudimentary surface deformation modeler (See supplementary ma-
terial). This modeler is equipped with four brushes:

Inflate/Deflate paint to cause instantaneous displacement in the di-
rection of the surface normal

Smooth paint to cause instantaneous explicit Laplacian smoothing

Grab hold onto part of the surface (with a distance-based falloff in
influence) and drag it around

Move hold onto an entire connected component of the surface
rigidly and drag it around

Between every pair of frames we run an edge-based (split/collapse)
remeshing algorithm to dynamically adapt mesh resolution.

For the inflate and smooth brushes, we incorporate topology change
in the obvious manner. Between every pair of frames (before
remeshing) we run our algorithm. Doing so produces instantaneous
topology change.

For the grab and move brushes, user interaction often involves the
exploration of different options by dragging through them. If the

user decides against taking the action they were contemplating, re-
turning the mouse to the position at which the drag began effec-
tively cancels the action. To incorporate topology change in this
scenario, we take a different approach. While the mouse is de-
pressed, we run collision detection each frame, accumulating new
collisions into the running tally kept by the raw parity field. Only
when the mouse is released do we execute the full topology change
algorithm (using the accumulated raw parity) and commit the re-
sult. In order to aid the user, we also compute the corrected parity
field every frame and display the result as immediate feedback.

5 Analysis

Collision parity tends to produce similar results compared to
methods which require solid meshes. In this sense, we can think of
parity as being backwards-compatible—semantically—with prior
work. In order to allow for a more formal exploration of this claim,
we restrict our attention to the case of solid surfaces, where all
methods’ behaviors are well defined. Given this restricted setting,
we can make the following claims.

Theorem 5.1. Given a solid mesh and a deformation thereof,
parity-based topology change will produce a solid mesh.
Theorem 5.2. Given two solid meshes undergoing independent
rigid motion, parity-based topology change will yield their Boolean
union as if computed via CSG.
Proposition 5.3 (informal). For most common cases, given a de-
forming solid mesh, parity-based topology change will compute the
expected result, given a solid interpretation.

In Appendix C, we formalize the final proposition in to a more pre-
cise claim, from which the first two claims follow as corollaries. In
total, this argument serves to establish a notion of soundness for our
method: solid surfaces are handled as expected.

In addition to formal arguments, we also measured the time and
space usage of our prototype system. The code for this system is
being made available under the LGPL. We are able to operate on
meshes of up to ∼ 10, 000 triangles at interactive rates using less
than 120MB RAM. The majority of time is spent computing inter-
sections and collision detection, so we expect that the method can
be scaled to larger meshes through the use of more aggressive accel-
eration structures. As a point of comparison, the grid-based method
used by Wojtan et al. [2009] can be used for interactive sculpting of
solid surfaces with up to ∼ 40, 000 triangles.

6 Applications

Mr. potato head modeling — part assembly (Figure 9) Very
easy to use modelers can be built around the idea of assembling
a model from existing parts [Chaudhuri et al. 2011; Schmidt and
Singh 2010; Hecker et al. 2008]. Such modelers depend on some
algorithm to allow users to join various parts together. Methods
like the one used in Mesh Mixer [Schmidt and Singh 2010] require
that the target surface patch be manifold and disk-like (i.e. simply
connected), and that the part/surface being attached has a single
loop boundary which can be stitched into this disk.

By contrast the method presented here enables the attachment of
parts as a side effect when used with our move tool. Unlike the more
specialized algorithms, ours is universally applicable, allowing any
two surfaces to become attached wherever the user desires.

Pinch closing (Figure 10) Many brushes in mesh sculpting pro-
grams may cause the surface to become pinched. For instance,
painting a crease in the surface with a displacement along normal



Figure 9: Using topology change to model-by-parts. The hands are
closed, while the feet and nose are open surfaces.

(“inflate”) brush often causes the surface to pinch. When topology
change is added to the system, these pinches are correctly deleted
as they close up. This ensures that the surface remains well behaved
as successive operations are applied near the crease.

initial position

final position
final position
(intersections)

rear view

parity result

Figure 10: Topology change helps clean up undesirable features
that arise while sculpting, like pinched surfaces.

Paper mache (Figure 11) While not designed for this purpose,
topology change can be used to join two surfaces by slotting one
into the other. In conjunction with a Laplacian smoothing brush,
surfaces can be joined and smoothed together as if one were paper
mache-ing an object.

(a) (b) (c) (d)

Figure 11: An improvised use of topology change. By pulling a
surface edge around (b) and repeatedly into another surface, (c)
the two surfaces become connected. Once connected, the ‘smooth’
brush with dynamic remeshing can be used (d) to clean up the join,
achieving a paper-mache-like process.

More complex example (Figure 12) This example exhibits mod-
els of a cow and two wings consisting of about 25,000 triangles in
total. This cow model was purchased by a colleague as part of a
mesh set. As provided, the cow model is composed of hundreds
of disconnected mesh components, many of which intersect each
other. Needless to say, this presents a challenging case for topology
change, representative of the issues which arise in practice. Never-
theless, our method is able to successfully join the wing to the cow
body.

7 Limitations

Formal properties of our method are proven for the continuous set-
ting. However, the discretization of the parity field which we use
(sampling only at mesh vertices) can miss important collisions. For
instance, when a cylinder is plunged into a single large triangle
(Figure 13), no parity samples lie on the triangle, within the cylin-
der. The result is incorrect topology change. This shortcoming can
be eliminated by adaptively refining the mesh in response to colli-
sions. In the particular scenario we give, adding a single vertex to
the large triangle (placed inside the cylinder) would result in correct
topology change. In order to keep our prototype implementation
simpler, we chose not to address this issue.

We have shown some examples of our method dealing with multi-
ple disconnected mesh components (Figures 8 and 12). Our method
is able to successfully handle some of these cases, but arbitrary tri-
angle soups may still pose a problem because the error correction
algorithm in Section 3.4 assumes a connected graph.

Our method is designed for general purpose use, not tailored to
specific applications. Unfortunately, this choice also leads to un-
expected behavior in some more specific contexts. For instance,
when assembling models from existing parts, some of those parts
will have open boundaries on the side where they are attached. This
can lead to the preservation of occluded surface components whose
presence the user is unaware of. To take another example, when
mimicking a paper mache process, bringing two sheets together
will often create tunnels/holes in the process of connecting the two
surfaces. A different form of topology change more focused on
merging colliding surfaces would probably be more appropriate.

Another issue arrises when self-intersecting geometry begins to
move. Currently, we do not resolve self-intersections so long as
they remain static. However, once the intersecting portion of the
surface begins moving, the resulting raw parity field may over-
whelm the suppressing effect of error correction and cause holes
to open in the mesh as a result.

When discussing this system with others, we repeatedly received
opinions that our system (or variants of it) produce “intuitive” or
“unintuitive” behavior. Frequently, we would receive both opinions
about the same example. When we restrict ourselves to the case
of solid objects, these disagreements disappear, but in non-solid
cases disagreement is common. Consequently, we observe that the
goal of producing “intuitive” behavior for a method applicable to
arbitrary surfaces is likely to be a fool’s errand. None-the-less we
can propose methods for topology change which may be useful to
artists and whose idiosyncrasies can be learnt over time.

Some of these shortcomings could probably be addressed (at least
in particular cases) with specialized hacks. However, from our ex-
perience experimenting with error correction schemes, we observed
that fixing one problem generates a host of others. In the interest of
keeping our approach simple and focused, we chose not to explore
complicating fixes.

Some of these issues, like those with paper mache-ing, go beyond
hacks. In that case, a different kind of topology change with a dif-
ferent behavior might be more appropriate. Consider the behavior
of a soap film when two soap bubbles collide at low speed. Rather
than annihilate each other, the two colliding surfaces merge into a
single interface. Examples like this one suggest that multiple dif-
ferent kinds of topology change behavior are necessary to satisfy
users’ expectations. One interesting direction for future research is
to explore how to organize and categorize different kinds of topol-
ogy change, working under the premise that there cannot be one
universally appropriate behavior.



Figure 12: We attach a pair of wings to a cow model (a) composed of many disconnected components, intersecting as shown (b) in red.
Nonetheless, we are able to (c) compute topology change. (Inset) Error correction cannot fix completely disconnected components.

Figure 13: A failure case of our algorithm. A closed cylinder
plunges downward through a single giant triangle (left). Because
there are no parity samples on the triangle itself, our algorithm
does not properly delete the hole caused by the cylinder. Instead, it
causes a non-manifold junction between both models (right).

8 Conclusions and Outlook

In closing, we have provided a method for computing topological
changes on triangle meshes that are not subject to the typical re-
strictions common among most geometric algorithms. Our method
does not require the input meshes to represent solid objects, so it is
more widely applicable than most existing algorithms. To further
improve the method’s reliability, we provide a novel error correc-
tion mechanism that both handles poor-quality meshes and tolerates
inaccuracies in collision detection computations.

Because our method is error-tolerant and applicable to such a wide
range of potential inputs, we believe that it can integrate nicely into
geometric modeling applications of the future. The algorithm’s ef-
ficiency and simplicity allow topology change to happen naturally
with any deformation tool, instead of needing to be explicitly ef-
fected through a special tool.

As a consequence of this ease of integration, we believe our method
has the potential to significantly improve the standard work flow
of a geometric modeler. Once a user understands the general idea
of a behavior like topology change and how their different tools
can be used to deform a surface, they can discover new strategies
through exploration and continued use. By way of comparison,
sketch-based modeling programs must incorporate special new ges-
ture types, which the user must then learn how to execute in order to

introduce tunnels or handles in an existing surface. These tools are
less likely to lead the user to discover serendipitous uses or combi-
nations. We see our method as a way to easily incorporate topology
change into a 3d modeler, similar to the way Harmon et al. [2011]
incorporate collision detection and response.

We suspect that this line of thinking may lead to further innova-
tions in 3d modeling tools. How can we incorporate more behav-
iors, (e.g. topology change, collision response) natural or other-
wise, with compounding effects into our tools? How few tools and
behaviors can we use to build a parsimonious, compelling and flex-
ible modeling system?
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Appendix A

Given a point p and triangle (a, b, c) in motion from p0 to p1 and
from (a0, b0, c0) to (a1, b1, c1), the point collides with the trian-
gle’s plane whenever the triple product

[ (1− t)(a0 − p0) + t(a1 − p1) ;

(1− t)(b0 − p0) + t(b1 − p1) ;

(1− t)(c0 − p0) + t(c1 − p1) ]

vanishes. This produces a cubic equation in twhose roots are found
via interval search. Candidate intersection points are then tested for
containment in the triangle and in the time interval (0, 1). Stan-
dard floating-point arithmetic is used. Exact methods [Brochu et al.
2012] could be used instead to avoid inaccuracies due to floating-
point, but are unnecessary due to error correction.

Appendix B

The quadratic energy used during error correction is minimized by
solving a linear equation Ax = b using a sparse Cholesky solver.
This system can be set up using the following formulas.

Aij =

{
0, (i, j) is cut with ri = rj

−wij , otherwise

Aii = −
∑
j 6=i

Aij + γ

bi = γri +
∑
j

wij(ri − rj) where (i, j)is cut and ri 6= rj

Appendix C

We begin by defining and/or recalling a few concepts related to
point in polygon tests. After that, we present a lemma and corollar-
ies.

Recall that every solid surface (closed and non-self-intersecting)
has a canonical normal field with normals pointing outward(§2.1).
In the following, we assume that all solid surfaces are equipped with
this canonical normal field. Furthermore, we assume that every sur-
face begins and ends its motion in general position. We make this



assumption here to simplify the analysis. In our code, we use per-
turbation and exact geometric predicates to treat general position-
related issues—we do not ignore them.

Given a closed surface equipped with a normal field, we define the
containment number ω(p) of a point p not on the surface as fol-
lows: Select any continuous path starting at p and diverging towards
infinity. If this path never crosses the surface, then ω(p) = 0. Oth-
erwise, we may compute ω(p) by the following procedure. Start
with ω(p) = 0. Then, trace along the path beginning at p. Ev-
ery time the path crosses the surface, increment the containment
number if we cross the surface in the same direction as the surface
normal, and decrement the containment number if we cross in the
opposite direction. For closed surfaces the quantity computed by
this procedure is invariant to the choice of path. As the surface
moves, the containment number at p is preserved so long as the sur-
face does not pass over p. So, as the surface moves, it will adjust
the containment number at p only as it passes over p. The rules for
this update derive from the above definition. If the surface passes
over p traveling in the direction of its surface normal, then the con-
tainment number at p is incremented; otherwise it is decremented.
In 2d, this containment number is equivalent to the winding number
of a curve.

Containment numbers can be used to classify the space around a
surface into space contained inside the surface (ω(p) = 0) and
space outside the surface (ω(p) = 1). This binary interpretation
of containment numbers suffices for solid surfaces; we consider two
possible extensions to self-intersecting but closed surfaces:

• The sign interpretation says that a point p is inside if ω(p) >
0 and outside if ω(p) ≤ 0.

• The modulo interpretation says that a point p is inside if
ω(p) ≡ 1 or 2(mod 4) and inside if ω(p) ≡ 0 or −1(mod 4)

Of these two interpretations the sign interpretation is probably
more natural. However, without arguing their relative merits, we
can observe that so long as ω(p) ∈ {−1, 0, 1, 2}, both interpreta-
tions agree. (i.e. so long as the containment number deviates by at
most one from the expected values 0 and 1)

Lemma 8.1. Given an initially solid surface undergoing deforma-
tion, tracking collision parity results in topology change equivalent
to the modulo interpretation for containment numbers.

Proof sketch. Consider a point p of the surface undergoing defor-
mation, a point p+ displaced infinitesimally away from p in the
normal direction and a point p− displaced infinitesimally far away
from p in the opposite direction. Before the surface begins to move
ω(p+) = 0 and ω(p−) = 1. During movement p collides with
other pieces of the surface an even or odd number of times.

If p collides an even number of times, then the containment num-
bers of p+ and p− must both change by the same amount: some
multiple of 2, say 2k. So either ω(p+) ≡ 0(mod 4) while ω(p−) ≡
1(mod 4), or ω(p+) ≡ 2(mod 4) while ω(p−) ≡ −1(mod 4). Un-
der the modulo interpretation of containment number, this means
that either p+ is outside while p− is inside, or vice-versa. So, under
the modulo interpretation we would choose to not delete points p
on the surface which collide an even number of times.

If p collides an odd number of times, then the containment num-
bers of p+ and p− must both change by the same amount: 2k + 1.
So either ω(p+) ≡ 1(mod 4) while ω(p−) ≡ 2(mod 4), or
ω(p+) ≡ −1(mod 4) while ω(p−) ≡ 0(mod 4). Under the mod-
ulo interpretation of containment number, this means that either p+

and p− are both inside, or they are both outside. In either case, we

would choose to delete p since it does not serve to separate inside
from outside.

The first theorem(§5.1) follows directly from this lemma, since
we just demonstrated that parity based topology change can be
interpreted as providing an inside/outside classification for closed
surfaces.

Corollary 8.2 (Theorem 5.2). Given two solid meshes undergoing
independent rigid motion, parity-based topology change will yield
their Boolean union as if computed via CSG.

Proof. Consider two solid meshes undergoing independent rigid
motion. When they are done moving every point p of space is
either outside of both meshes, inside one of the meshes or inside
both. Thus ω(p) ∈ {0, 1, 2}. Under the modulo interpretation of
containment number, we interpret the value 0 as outside and both
1 and 2 as inside. Leveraging lemma 8.1, we know that comput-
ing parity-based topology change will yield a solid mesh under the
modulo interpretation. Therefore this resulting mesh will represent
the Boolean union of the two solid meshes in question.

Finally, to the extent that we are willing to accept the informal
proposition (i.e. observation) that ω(p) is often confined to the
set of values {−1, 0, 1, 2}, then we observe that computing parity-
based topology change for initially solid surfaces often yields the
same result as under a sign interpretation of containment numbers.


